Рабочая программа разработана с учётом требований следующих нормативных документов:

- 1. Федерального закона от 29.12.2012 года № 273-Ф3 «Об образовании в Российской Федерации».
- 2. Постановление главного государственного санитарного врача РФ от 29.12.2012 № 189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».
- 3. Федеральный государственный образовательный стандарт основного общего образования. Утверждён приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г., № 1897 с изменениями в соответствии с приказом №1644 от 29.12.2014 года.
- 4. Основная образовательная программа основного общего образования;
- 5. Приказ Министерства просвещения РФ № 345 от 28.12.2018 года «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;
- 6. Приказ Министерства просвещения РФ № 233 от 8.05.2019 «О внесении изменений в федеральный перечень учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденный приказом Министерства просвещения РФ от 28 декабря 2018 г. № 345;
- 7. Устав Государственного бюджетного общеобразовательного учреждения средней общеобразовательной школы № 319 Петродворцового района Санкт-Петербурга;
- 8. Учебного плана Государственного бюджетного общеобразовательного учреждения средней общеобразовательной школы № 319 Петродворцового района Санкт-Петербурга на 2019-2020 учебный год.

#### Пояснительная записка.

Настоящая программа по алгебре соответствует:

- Федеральному образовательному стандарту основного общего образования с изменениями и дополнениями;
- примерной образовательной программе основного общего образования;
- авторской программе по алгебре авторы А. Г. Мерзляк, В. Б. Полонский, М. С. Якир;
- образовательной программе основного общего образования школы 319;
- учебному плану школы 319;
- федеральному перечню учебников.

В ней также учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Курс алгебры 8 класса является базовым для математического образования и развития школьников. Алгебраические знания и умения необходимы для изучения геометрии, алгебры и математического анализа в 10-11 классах, а также смежных дисциплин.

Практическая значимость школьного курса алгебры 8 класса состоит в том, что предметом её изучения являются количественные отношения и процессы реального мира, описанные математическими моделями. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Одной из основных целей изучения алгебры является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения алгебры формируется логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение алгебре даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения алгебры школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную письменную и устную речь.

Знакомство с историей развития алгебры как науки формирует у учащихся представление об алгебре как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение И систематизацию. акцентируются содержательное раскрытие математических понятий, сущности математических методов, и области их применения, демонстрация возможности применения теоретических знаний для решения разнообразных задач прикладного характера, например решение текстовых задач, денежных и процентных расчетов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений, Важно приводить детальные пояснения к решению типовых упражнений.

Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа

# Описание места учебного предмета «Алгебра» в учебном плане

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Алгебра» изучается с 7-го по 11-й класс. Согласно федеральному базисному учебному плану, на изучение алгебры в 8-м классе отводится 102 часа, из расчета 3 часа в неделю. В случае выполнения учебного плана не в полном объеме (карантин, природные факторы, дополнительные каникулы, праздники) производится корректировка рабочих программ. Заместитель директора по УВР согласует листы корректировки рабочих программ указанным способом коррекции программы.

# Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Алгебра»

# 1. Учебники и учебно-методическая литература:

1)А.Г. Мерзляк, В.Б. Полонский, М.С.Якир— учебник для 8 класса общеобразовательных учреждений

(Москва «Вентана Граф»)

2)А.Г.Мордкович – тесты для 7-9 классов

(Москва «Мнемозина»)

3) Е.Б. Арутюнян – математические тесты для 7-9 классов

(Москва «Просвещение»)

- 4)Л.А.Александрова самостоятельные работы для общеобразовательных учреждений (Москва «Мнемозина»)
- 5) А.Г. Мерзляк, В.Б. Полонский, М.С.Якир дидактические материалы по алгебре 8 класс

(Москва «Вентана Граф»)

6)Ю.М. Колягин, Ю.С.Сидоров – изучение алгебры в 7-9 классах

(Москва «Просвещение»)

7) Ю.М. Колягин, М.В. Ткачева – тематические тесты по алгебре

(Москва «Просвещение»)

8)В.В Черноруцкий – контрольно-измерительные материалы. Алгебра 8 класс. ФГОС (Москва «Вако»)

# 2. Материально техническое обеспечение

Раздаточный дидактический материал

Тесты

Тематические таблицы

Компьютер, интерактивная доска

# 3. Интернет-ресурсы

www.sch2000.ru
www.ege.moipkro.ru
www.fipi.ru
ege.edu.ru
www.mioo.ru
www.1september.ru
www.math.ru
www.allmath.ru
www.uztest.ru

http://schools.techno.ru/tech/index.html

http://www.catalog.alledu.ru/predmet/math/more2.html

http://shade.lcm.msu.ru:8080/index.jsp

http://wwwexponenta.ru/

http://comp-science.narod.ru/

http://methmath.chat.ru/index.html

http://www.mathnet.spb.ru/

http://vip.km.ru/vschool/demo/education.asp?subj=292

http://som.fio.ru/subject.asp?id=10000191

http://education.bigli.ru

# Планируемые результаты изучения алгебры в 8 классе

#### Алгебраические выражения

**Ученик умеет**: оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами; оперировать понятием квадратного корня, применять его в вычислениях; выполнять преобразование выражений, содержащих степени с целыми показателями и квадратные корни; выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями; выполнять разложение многочленов на множители.

**Ученик получит возможность**: выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов; применять тождественные преобразования для решения задач из различных разделов курса.

#### **Уравнения**

**Ученик умеет**: решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными; понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом; применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

**Ученик получит возможность**: овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики; применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

#### В повседневной жизни и при изучении других предметов:

составлять и решать квадратные уравнения, уравнения, к ним сводящиеся, при решении задач других учебных предметов;

выполнять оценку правдоподобия результатов, получаемых при решении квадратных уравнений при решении задач других учебных предметов;

выбирать соответствующие уравнения, для составления математической модели заданной реальной ситуации или прикладной задачи;

уметь интерпретировать полученный при решении уравнения результат в контексте заданной реальной ситуации или прикладной задачи

#### Числовые множества

**Ученик умеет:** понимать терминологию и символику, связанные с понятием множества, выполнять операции над множествами; использовать начальные представления о множестве действительных чисел.

**Ученик получит возможность**: развивать представление о множествах; развивать представление о числе и числовых системах от натуральных до действительных чисел; о

роли вычислений в практике; развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

#### В повседневной жизни и при изучении других предметов:

использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов

оценивать результаты вычислений при решении практических задач;

выполнять сравнение чисел в реальных ситуациях;

составлять числовые выражения при решении практических задач и задач из других учебных предметов

#### Функции

Ученик умеет: понимать и использовать функциональные понятия, язык (термины, символические обозначения); строить графики элементарных функций, исследовать свойства числовых функций на основе изучения поведения их графиков; понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;

**Ученик получит возможность**: проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.); использовать функциональные представления и свойства функций решения математических задач из различных разделов курса.

#### В повседневной жизни и при изучении других предметов:

использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

использовать свойства линейной функции и ее график при решении задач из других учебных предметов

# Личностные, метапредметные и предметные результаты освоения содержания курса алгебра 8 класса.

Изучение алгебры по данной программе способствует формированию у учащихся **личностных, метапредметных и предметных результатов** обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

#### Личностные результаты:

- 1) воспитание российской гражданской идентичности; патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- 2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- 3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а так же на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- 4) умение контролировать процесс и результат учебной и математической деятельности;
- 5) критичность мышления, инициатива, находчивость, активность при решении математических задач.

#### Метапредметные результаты:

1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

- 2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действия в рамках предложенных условий и требований, корректировать свои действия в соответствии изменяющейся ситуацией;
- 3) Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- 4) умение устанавливать причинно- следственные связи, строить логические рассуждения, умозаключения ( индуктивное, дедуктивное, по аналогии) и делать выводы;
- 5) развитие компетентности в области использования информационно-коммуникационных технологий:
- 6) первоначальные представления о идеях и методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 7) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 8) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение у условиях неполной или избыточной, точной или вероятностной информации;
- 9) Умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 10) умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- 11) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

#### Предметные результаты:

- 1) осознание значения математики в повседневной жизни человека;
- 2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации
- 3) развитие умение работать с учебным математическим текстом ( анализировать извлекать необходимую информацию), точно и грамотно излагать свои мысли с применением математической терминологии и символики, проводить классификацию, логические обоснования;
- 4) владение базовым понятийным аппаратом по основным разделам содержания;
- 5) систематические знания о функциях и их свойствах;
- 6) практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:
  - выполнять вычисления с действительными числами;
  - решать текстовые задачи с помощью уравнений и систем уравнений;
  - использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;
  - выполнять тождественные преобразования алгебраических выражений;.
  - исследовать линейные функции и строить их графики.

Алгебра как содержательный компонент математического образования в основной школе нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для усвоения информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных (равномерных, равноускоренных, экспоненциальных, периодических и формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности — умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Примерные нормы оценки знаний, умений и навыков обучающихся.

# 1. Оценка письменных контрольных работ обучающихся по математике.

#### Ответ оценивается отметкой «5», если:

- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

#### **Отметка** «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

### **Отметка** «З» ставится, если:

• допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

## **Отметка** «2» ставится, если:

• допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

#### **Отметка** «1» ставится, если:

• работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

# 2. Оценка устных ответов обучающихся.

#### Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя

**Ответ оценивается отметкой «4»** если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов, при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

#### **Отметка** «З» ставится в следующих случаях:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

#### Отметка «2» ставится в следующих случаях

- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;

• допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

#### Отметка «1» ставится, если:

• ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

# 3. Общая классификация ошибок.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

# 3.1 Грубыми считаются ошибки:

- ✓ незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
- ✓ незнание наименований единиц измерения;
- ✓ неумение выделить в ответе главное;
- ✓ неумение применять знания, алгоритмы для решения задач;
- ✓ неумение делать выводы и обобщения;
- ✓ неумение читать и строить графики;
- ✓ неумение пользоваться первоисточниками, учебником и справочниками;
- ✓ потеря корня или сохранение постороннего корня;
- ✓ отбрасывание без объяснений одного из них;
- ✓ равнозначные им ошибки;
- ✓ вычислительные ошибки, если они не являются опиской;
- ✓ логические ошибки.

#### 3.2 К негрубым ошибкам следует отнести

- ✓ неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
- ✓ неточность графика;
- ✓ нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- ✓ нерациональные методы работы со справочной и другой литературой;
- ✓ неумение решать задачи, выполнять задания в общем виде.

# 3.3 Недочетами являются:

- ✓ нерациональные приемы вычислений и преобразований;
- ✓ небрежное выполнение записей, чертежей, схем, графиков

# Содержание учебного материала курса алгебры 8 класса.

#### Алгебраические выражения

Рациональные выражения. Целые выражения. Дробные выражения. Рациональная дробь. Основное свойство рациональной дроби. Сложение, вычитание, умножение и деление рациональных дробей. Возведение рациональной дроби в степень. Тождественные преобразования рациональных выражений. Степень с целым показателем и её свойства. Квадратные корни. Арифметический квадратный корень и его свойства. Тождественные преобразования выражений, содержащих квадратные корни.

Квадратное уравнение. Формула корней квадратного уравнения. Теорема Виета. Рациональные уравнения. Решение рациональных уравнений, сводящихся к линейным или к квадратным уравнениям. Решение текстовых задач с помощью рациональных уравнений..

#### Числовые множества

Множество и его элементы. Способы задания множеств. Равные множества. Пустое множество. Подмножество. Операции над множествами. Иллюстрация соотношений между множествами с помощью диаграмм Эйлера. Множества натуральных, целых, рациональных чисел. Рациональное число как дробь вида m/n,

где  $m \in Z$ ,  $n \in N$ , и как бесконечная периодическая десятичная дробь. Представление об иррациональном числе. Множество действительных чисел. Представление действительного числа в виде бесконечной непериодической десятичной дроби. Сравнение действительных чисел. Связь между множествами N, Z, Q, R.

# Функции

Числовые функции Функциональные зависимости между величинами. Понятие функции. Функция как математическая модель реального процесса. Область определения и область значения функции. Способы задания функции. График функции. Построение графиков функций с помощью преобразований фигур. Нули функции. Промежутки знакопостоянства функции. Промежутки возрастания и убывания функции. Обратная пропорциональность, квадратичная функция, функция  $y = x^2$ , её свойства и графики.

#### Алгебра в историческом развитии

Зарождение алгебры, книга о восстановлении и противопоставлении Мухаммеда аль- Хорезми. История формирования математического языка. Как зародилась идея координат. Открытие иррациональности. Из истории возникновения формул для решения уравнений 3-й и 4-й степеней. История развития понятия функции..

#### Формы организации учебного процесса:

**Технологии:** дифференцированное обучение, обучение с применением опорных схем, ИКТ, кейс-системы, проекты.

**Формы проведения занятий**: лекции, комбинированные уроки, практикумы, повторительно-обобщающие уроки, семинары, конференции.

Обучение несет деятельностный характер, акцент делается на обучение через практику, продуктивную работу учащихся в малых группах, использование межпредметных связей, развитие самостоятельности учащихся и личной ответственности за принятие решений. Будут созданы условия для самореализации школьников: участие в соревнованиях, презентациях, семинарах, конкурсах, олимпиадах, что должно способствовать активизации их самостоятельной деятельности, развитию креативности и формированию функциональной грамотности — умений воспринимать и анализировать информацию, представленную в различных формах.

**Разноуровневое обучение** позволит каждому ученику приобрести предметную компетентность, достичь соответствующего уровня планируемых результатов, развить коммуникативные способности, овладеть навыками коллективной деятельности, научиться работать самостоятельно с учебным материалом.

Формы и методы контроля ЗУН: самостоятельные работы, тесты, контрольные работы