Пояснительная записка.

Рабочая программа составлена на основе:

- Федерального закона № 273-ФЗ от 29.12.2012 «Об образовании в Российской Федерации»;
- Приказа Министерства образования Российской Федерации «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования» от 05.03.2004 № 1089;
- Приказа Министерства образования и науки Российской Федерации от 31.01.2012 №69 «О внесении изменений в федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования, утвержденный приказом Министерства образования Российской Федерации от 5 марта 2004года № 1089»;
- Основной образовательной программы основного общего образования
- Приказ Министерства просвещения РФ № 345 от 28.12.2018 года «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
- Приказ Министерства просвещения РФ № 233 от 8.05.2019 «О внесении изменений в федеральный перечень учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденный приказом Министерства просвещения РФ от 28 декабря 2018 г. № 345.
- Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 «Санитарноэпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях», зарегистрированные в Минюсте России 03 марта 2011 года, регистрационный номер 19993;
- Учебного плана Государственного бюджетного общеобразовательного учреждения средней общеобразовательной школы № 319 Петродворцового района Санкт-Петербурга на 2019-2020 учебный год;
- Примерной программы основного общего образования по химии и программы основного общегообразования по химии для 9 класса авторов Н.Е. Кузнецовой, И.М. Титова, Н.Н.Гара.

Рабочая программа составлена на основе федерального компонента государственного стандарта основного общего образования, Примерной программы основного общего образования по химии и программы по химии для 8-11 классов общеобразовательных учреждений авторов Н.Е.Кузнецовой, И.М. Титовой, Н.Н. Гара.

По учебному плану на изучение химии в 9 классе отводится 68 часов в год (34 учебные недели; 2 учебных часов в неделю).

В случае выполнения учебного плана не в полном объеме (карантин, природные факторы, дополнительные каникулы, праздники) производится корректировка рабочих программ. Заместитель директора по УВР согласует листы корректировки рабочих программ указанным способом коррекции программы.

Учебно-методический комплекс

Для учащихся:

- 1. Программа по химии для 8-11 классов общеобразовательных учреждений. Под редакцией проф. Н.Е. Кузнецовой. М.: Вентана-Граф, 2008 г.
- 2. Кузнецова Н.Е., Титова И.М., Гара Н.Н., Жегин А.Ю. Химия. Учебник для 9 класса

- общеобразовательных учреждений. М.: Вентана-Граф, 2009г.
- 3. Кузнецова Н.Е., Левкин А. Н. Задачник по химии. 9 кл. М.: Вентана-Граф, 2009.

Для учителя:

- 1. Зуева М.В., Гара Н.Н. Новые контрольные и проверочные работы. 8-9 классы. М.: Дрофа, 2002.
- 2. Зуева М. В., Гара Н.Н. В химической лаборатории. 9 кл. Рабочая тетрадь. М.: Вентана-Граф, 2002.
- 3. Новошинский И.И., Новошинская Н.С. Типы химических задач и способы их решения. 811 классы. М.:Оникс, 2006г.
- 4. Хомченко И.Г. Сборник задач и упражнений по химии для средней школы. М.: Новая волна. 2006.
- 5. Шукайло А.Д. Тематические игры по химии. Методическое пособие для учителя. М. 2003.

В программе выражена химико-экологическая направленность содержания, отражена система важнейших химических знаний, раскрыта роль химии в познании окружающего мира, в повышении уровня материальной жизни общества, в развитии его культуры, в решении важнейших проблем современности.

Изучение химии в основной школе направлено на достижение следующих целей:

- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- на овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- на развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- на воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- на применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Изучение тематики данной учебной программы направлено решение следующих задач:

- формирование знаний основ химической науки важнейших фактов, понятий, химических законов и теорий, химического языка;
- развитие умений сравнивать, вычленять в изученном существенное, устанавливать причинноследственную зависимость в изучаемом материале, делать доступные обобщения, связно и доказательно излагать учебный материал;
- знакомство с применением химических знаний на практике;
- формирование умений наблюдать, фиксировать, объяснять химические явления, происходящие в природе, в лаборатории, в повседневной жизни;
- формирование специальных навыков в обращении с веществами, выполнения несложных опытов с соблюдением правил техники безопасности в лаборатории;
- раскрытие роли химии в решении глобальных проблем, стоящих перед человечеством;
- раскрытие у школьников гуманистических черт и воспитание у них элементов экологической и информационной культуры;
- раскрытие доступных обобщений мировоззренческого характера и вклада химии в научную картину мира.

Общая характеристика учебного предмета.

Курс имеет химико-экологическую направленность, его содержание, последовательность

и методы раскрытия учитывают возрастные и типологические особенности учащихся с целью обеспечения доступности учебного материала на каждом этапе обучения. В содержание учебного предмета включен ряд сведений занимательного, исторического, прикладного характера, содействующих мотивации учения, развитию познавательных интересов и решению других задач воспитания личности.

Курс химии 9 класса посвящен систематике химических элементов неорганических и органических веществ и строится на основе проблемно - деятельностного подхода. Курс представлен тремя системами знаний: 1) вещество; 2) химические реакции; 3) химическая технология и прикладная химия.

Фактологическая часть программы включает сведения о неорганических и органических веществах. Учебный материал отобран таким образом, чтобы можно было объяснить на современном и доступном для учащихся уровне теоретические положения, изучаемые свойства веществ, химические процессы, протекающие в окружающем мире.

Теоретическую основу изучения неорганической химии составляет атомно-молекулярное учение, периодический закон Д. И. Менделеева с краткими сведениями о строении атомов, видах химической связи, закономерностях химических реакций.

Изучение органической химии основано на учении А. М. Бутлерова о химическом строении веществ. Указанные теоретические основы курса позволяют учащимся объяснять свойства изучаемых веществ, а также безопасно использовать эти вещества и материалы в быту, сельском хозяйстве и на производстве.

В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ, несложных экспериментов и описанию их результатов; соблюдению норм и правил поведения в химических лабораториях.

Рабочая программа полностью соответствует примерной программе, изменена лишь последовательность изучения некоторых тем.

Данная рабочая программа реализована при использовании традиционной технологии обучения, а также элементов других образовательных технологий, таких как развивающее обучение, компьютерные и здоровьесберегающие технологии, проблемное обучение, игровые технологии. Используются различные методы обучения: словесные (рассказ, беседа, лекция); наглядные (демонстрации с использованием обучающих дисков и Интернет-ресурсов);

практические (лабораторные и практические работы); интерактивные (проблемные и развивающие ситуации, групповая работа, «мозговой штурм»), исследовательские и проектные.

Контроль предусматривает уровня знаний учащихся проведение практических, самостоятельных и контрольных работ, фронтального и индивидуального опроса.

В соответствии с федеральным базисным учебным планом и учебным планом школы рабочая программа рассчитана на 68 учебных часов, из расчёта 2 часа в неделю.

Требования к уровню подготовки учащихся.

В результате изучения химии ученик должен

знать/понимать:

- химическую символику: знаки химических элементов, формулы химических веществ и уравнения химических реакций;
- важнейшие химические понятия: химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, химическая связь, вещество, классификация веществ, моль, молярная масса, молярный объем, химическая реакция, классификация реакций, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление;
- основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;

уметь:

- называть химические элементы, соединения изученных классов;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода, к которым элемент принадлежит в периодической системе Д. И. Менделеева; закономерности изменения свойств элементов в пределах малых периодов и главных подгрупп; сущность реакций ионного обмена;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д. И. Менделеева и особенностей строения их атомов; связь между составом, строением и свойствами веществ; химические свойства основных классов неорганических веществ;
- определять состав веществ по их формулам, принадлежность веществ к определенному классу соединений, типы химических реакций, валентность и степень окисления элемента в соединениях, тип химической связи в соединениях, возможность протекания реакций ионного обмена;
- составлять формулы неорганических соединений изученных классов; схемы строения атомов первых 20 элементов периодической системы
- Д. И. Менделеева; уравнения химических реакций;
- обращаться с химической посудой и лабораторным оборудованием;
- распознавать опытным путем кислород, водород, углекислый газ, аммиак; растворы кислот и щелочей, хлорид-, сульфат- и карбонат-ионы;
- *вычислять* массовую долю химического элемента по формуле соединения; массовую долю вещества в растворе; количество вещества, объем или массу по количеству вещества, объему или массе реагентов или продуктов реакции;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни с целью:

- безопасного обращения с веществами и материалами;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека;
- критической оценки информации о веществах, используемых в быту;
- приготовления растворов заданной концентрации.

РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ХИМИИ

Изучение химии в основной школе даёт возможность достичь следующих результатов в направлении личностного развития:

- 1) воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину, за российскую химическую науку;
- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, а также социальному, культурному, языковому и духовному многообразию современного мира;
- 3) формирование ответственного отношения к учению, готовности и способности к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору профильного образования на основе информации о существующих профессиях и личных профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- 4) формирование коммуникативной компетентности в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 5) формирование понимания ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- 6) формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книгами, доступными инструментами и

техническими средствами информационных технологий;

- 7) формирование основ экологического сознания на основе признания ценности жизни во всех её проявлениях и необходимости ответственного, бережного отношения к окружающей среде;
- 8) развитие готовности к решению творческих задач, умения находить адекватные способы поведения и взаимодействия с партнёрами во время учебной и внеучебной деятельности, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная поисково-исследовательская, клубная, проектная, кружковая и т. п.).

Метапредметными результатами освоения основной образовательной программы основного общего образования являются:

- 1) овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, поиска средств её осуществления;
- 2) умение планировать пути достижения целей на основе самостоятельного анализа условий и средств их достижения, выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ, осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;
- 3) умение понимать проблему, ставить вопросы, выдвигать гипотезу, давать определения понятиям, классифицировать, структурировать материал, проводить эксперименты, аргументировать собственную позицию, формулировать выводы и заключения;
- 4) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 5) формирование и развитие компетентности в области использования инструментов и технических средств информационных технологий (компьютеров и программного обеспечения) как инструментальной основы развития коммуникативных и познавательных универсальных учебных действий;
- 6) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- 7) умение извлекать информацию из различных источников (включая средства массовой информации, компакт-диски учебного назначения, ресурсы Интернета), свободно пользоваться справочной литературой, в том числе и на электронных носителях, соблюдать нормы информационной избирательности, этики;
- 8) умение на практике пользоваться основными логическими приёмами, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.;
- 9) умение организовать свою жизнь в соответствии с представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия, культуры и социального взаимодействия;
- 10) умение выполнять познавательные и практические задания, в том числе проектные;
- 11) умение самостоятельно и аргументированно оценивать свои действия и действия одноклассников, содержательно обосновывая правильность или ошибочность результата и способа действия, адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи, а также свои возможности в достижении цели определённой сложности;
- 12) умение работать в группе эффективно сотрудничать и взаимодействовать на основе координации различных позиций при выработке общего решения в совместной деятельности; слушать партнёра, формулировать и аргументировать своё мнение, корректно отстаивать свою позицию и координировать её с позицией партнёров, в том числе в ситуации столкновения интересов; продуктивно разрешать конфликты на основе учёта интересов и позиций всех его участников, поиска и оценки альтернативных способов разрешения конфликтов.

Предметными результатами освоения Основной образовательной программы основного

общего образования являются:

- 1) формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- 2) осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 3) овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сбережения здоровья и окружающей среды;
- 4) формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- 5) приобретение опыта использования различных методов изучения веществ; наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- 6) умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием;
- 7) овладение приёмами работы с информацией химического содержания, представленной в разной форме (в виде текста, формул, графиков, табличных данных, схем, фотографий и др.);
- 8) создание основы для формирования интереса к расширению и углублению химических знаний и выбора химии как профильного предмета при переходе на ступень среднего (полного) общего образования, а в дальнейшем и в качестве сферы своей профессиональной деятельности;
- 9) формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф.

Содержание курса химии 9 класс.

(2ч в неделю, всего - 68 часов)

Повторение. (2ч)

Вводный инструктаж.

Строение атома. Химическая связь. Строение вещества. Основные классы неорганических соединений. Свойства веществ

Раздел 1. Теоретические основы химии. (16ч)

Тема 1. Химические реакции и закономерности их протекания (3ч)

Энергетика химических превращений. Энергия активации. Понятие о промежуточных активированных комплексах. Кинетика. Скорость химической реакции. Закон действия масс. Зависимость скорости от условий протекания реакции. Катализ и катализаторы. общие сведения о гомогенном и гетерогенном катализе. Константа равновесия. Химическое равновесие, принцип Ле-Шателье. Метод определения скорости химических реакций.

Тема 2. Растворы. Теория электролитической диссоциации. (13 ч)

Сведения о растворах; определение растворов, растворители, растворимость, классификация растворов.

Предпосылки возникновения теории электролитической диссоциации. Идеи С. Аррениуса, Д. И. Менделеева, И. А. Каблукова и других ученых. Структура и значение научной теории. Электролиты и неэлектролиты.

Дипольное строение молекулы воды. Процессы, происходящие с электролитами при расплавлении и растворении веществ в воде. Роль воды в процессе электролитической диссоциации. Диссоциация электролитов с разным типом химической связи. Свойства ионов. Кристаллогидраты. Тепловые явления, сопровождающие процесс растворения. Краткие сведения о неводных растворах.

Основные положения теории растворов.

Сильные и слабые электролиты. Степень диссоциации. Константа диссоциации. Индикаторы. Реакции ионного обмена. Химические свойства кислот, солей и оснований в свете теории электролитической диссоциации. Гидролиз солей. Химические реакции в свете трех теорий: атомно-молекулярного учения, электронного строения атома, теории электролитической диссоциации.

Расчетные задачи. Расчеты по химическим уравнениям, если одно из реагирующих вешеств лано в избытке.

Практические занятия 1. Решение экспериментальных задач по теме «Электролитическая диссоциация».

Тема творческой работы. Значение научной теории для понимания окружающего мира, научной и практической деятельности.

Раздел 2. Элементы-неметаллы и их важнейшие химические соединения (32 ч)

Тема 3. Общая характеристика неметаллов.

Химические элементы — неметаллы (2ч)

Положение элементов — неметаллов в периодической системе Д. И. Менделеева. Неметаллы — р-элементы. Особенности строения их атомов: общие черты и различия. Относительная электроотрицательность. Степени окисления, валентные состояния атомов неметаллов. Закономерности изменения значений этих величин в периодах и группах периодической системы. Радиоактивные изотопы. Изотопы неметаллов, их применение. Характеристика углеродного метода, применяемого в разных областях науки. Загрязнение окружающей среды радиоизотопами; основные источники их поступления. Типичные формы водородных и кислородных соединений неметаллов. Распространение неметаллических элементов в природе. Простые вещества — неметаллы. Особенности их строения. Физические свойства (агрегатного состояния, температуры плавления, кипения, растворимости в воде).

Аллотропия. Аллотропия углерода и кремния, фосфора, серы. Обусловленность свойств аллотропов особенностями строения, их применение.

Химические свойства простых веществ- неметаллов. Причины химической инертности

благородных газов, низкой поведения серы, азота, углерода и кремния в окислительно-восстановительных реакциях. Общие свойства неметаллов и способы их получения.

Водородные соединения неметаллов. Формы водородных соединений.

Закономерности изменения физико-химических свойств водородных соединений в зависимости от особенностей строения атомов образующих их элементов. Кислотно-основная характеристика их растворов.

Высшие кислородные соединения неметаллов. Оксиды и гидроксиды. Их состав, строение, свойства.

Тема 4. Подгруппа кислорода и ее типичные представители. (6ч)

Общая характеристика элементов подгруппы кислорода. Закономерные изменения в подгруппе. Физические и химические свойства халькогенов - простых веществ. Халькогениды, характер их водных растворов. Биологические функции халькогенов. Сера как простое вещество.

Аллотропия серы. Переход аллотропных форм друг в друга. Химические свойства серы. Применение серы. Сероводород, строение, физические и химические свойства. Восстановительные свойства сероводорода. Качественная реакция на сероводород и сульфиды. Сероводород и сульфиды в природе. Воздействие сероводорода на организм человека. Получение сероводорода в лаборатории.

Кислородсодержащие соединения серы. Оксид серы (IV). Сернистая кислота. Состав, строение, свойства. Окислительно-восстановительные свойства кислородсодержащих соединений серы (IV). Сульфиты. Гидросульфиты. Качественная реакция на сернистую кислоту и ее соли. Применение кислородсодержащих соединений серы (IV).

Оксид серы (VI), состав, строение, свойства. Получение оксида серы (VI). Серная кислота, состав, строение, физические свойства. Особенности ее растворения в воде. Химические свойства разбавленной и концентрированной серной кислоты. Окислительные свойства серной кислоты. Качественная реакция на сульфат-ион. Применение серной кислоты.

Тема 5. Подгруппа азота и ее типичные представители. (8ч)

Общая характеристика элементов подгруппы азота. Свойства простых веществ элементов подгруппы азота. Важнейшие водородные и кислородные соединения элементов подгруппы азота, их закономерные изменения. История исследования элементов подгруппы азота.

Азот как элемент и как простое вещество. Химические свойства азота. Аммиак, строение, свойства, водородная связь между молекулами аммиака. Механизм образования иона аммония. Соли аммония, их химические свойства. Качественная реакция на ион аммония. Применение аммиака и солей аммония.

Оксиды азота. Строение оксида азота (II), оксида азота (ТУ). Физические и химические свойства оксидов азота (II), (I V).

Азотная кислота, состав и строение. Физические и химические свойства азотной кислоты. Окислительные свойства азотной кислоты. Составление уравнений реакций взаимодействия азотной кислоты с металлами методом электронного баланса. Соли азотной кислоты — нитраты. Качественные реакции на азотную кислоту и ее соли. Получение и применение азотной кислоты и ее солей.

Фосфор как элемент и как простое вещество. Аллотропия фосфора. Физические и химические свойства фосфора. Применение фосфора. Водородные и кислородные соединения фосфора, их свойства. Фосфорная кислота и ее соли. Качественная реакция на фосфат-ион.

Минеральные удобрения: классификация, примеры, особенности физиологического воздействия на растения. Проблема связанного азота. Проблема научно обоснованного использования минеральных удобрений в сельском хозяйстве. Расчеты питательной ценности удобрений. Проблема накопления нитратов.

Тема 6. Подгруппа углерода и ее типичные представители. (7ч)

Общая характеристика элементов подгруппы углерода. Электронное строение атомов элементов подгруппы углерода, распространение в природе.

Углерод как простое вещество. Аллотропия углерода: алмаз, графит, фуллерены. Адсорбция. Химические свойства углерода.

Кислородные соединения углерода. Оксиды углерода, строение, свойства, получение.

Угольная кислота и ее соли. Качественная реакция на карбонат-ион.

Кремний и его свойства. Кислородные соединения кремния: оксид кремния (IV), кремниевая кислота, состав, строение, свойства. Силикаты. Силикатная промышленность. краткие сведения о керамике, стекле, цементе.

Понятие о круговороте химических элементов на примере углерода, азота, фосфора и серы. Загрязнение атмосферы соединениями азота, серы, углерода. Химические превращения, происходящие с сернистым газом в атмосфере, механизмы воздействия сернистых соединений на живую и неживую природу (на примере состояний физиологической сухости у растений) и на карбонатсодержащие минералы (разрушение известняка, мрамора). Кислотные дожди, особенности их химического состава и последствия воздействия на живое и неживое. Накопление соединений азота и фосфора в природных водах.

Источники накопления диоксида углерода в атмосфере. Парниковый эффект. Взаимосвязь концентрации углекислого газа в атмосфере и температуры воздуха.

Раздел 3. Металлы (13 ч.)

Тема 6. Общие свойства металлов. (3ч)

Положение металлов в периодической системе. Особенности строения атомов металлов: s-, ри d-элементов. Значение энергии ионизации. Металлическая связь. Кристаллические решетки. Общие и специфические физические свойства металлов. Общие химические свойства металлов. Электрохимический ряд напряжения металлов. Использование электрохимического ряда напряжения металлов при выполнении самостоятельных работ. Электролиз расплавов и растворов солей. Практическое значение электролиза. Свойство металлов образовывать сплавы. Общие сведения о сплавах.

Понятие о коррозии металлов Коррозия металлов — общепланетарный геохимический процесс; ее виды: химическая и электрохимическая, способы борьбы с коррозией.

Тема7. Металлы главных и побочных подгрупп. (10ч)

Металлы — элементы І—ІІ групп. Строение атомов химических элементов ІА- и ІІА- групп, их сравнительная характеристика. Физические и химические свойства простых веществ, оксидов и гидроксидов, солей. Применение щелочных и щелочноземельных металлов. Закономерности распространения щелочных и щелочноземельных металлов в природе, их получение электролизом соединений. Минералы кальция, их состав, особенности свойств, области практического применения. Жесткость воды и способы ее устранения. Роль металлов І и ІІ групп в живой природе.

Алюминий: химический элемент, простое вещество. Физические и химические свойства. Распространение в природе. Основные минералы. Применение в современной технике. Важнейшие соединения алюминия: оксиды и гидроксиды; амфотерный характер их свойств. Металлы IVA-группы р-элементы. Свинец и олово: строение атомов, физико-химические свойства простых веществ; (оксиды и гидроксиды олова и свинца. Исторический очерк о применении этих металлов. Токсичность свинца и его соединений, основные источники загрязнения ими окружающей среды.

Железо, марганец, хром как представители d-элементов. Строение атомов, свойства химических элементов. Железо как простое вещество. Физические и химические свойства. Состав, особенности свойств и применение чугуна и стали как важнейших сплавов железа. О способах химической антикоррозийной защиты сплавов железа. Краткие сведения о важнейших соединениях металлов (оксиды и гидроксиды), их поведение в окислительно-восстановительных реакциях. Соединения железа — Fe^{2+} , Fe^{3+i} Качественные реакции на ионы железа. Биологическая роль металлов.

Демонстрации. 1.Образцы металлов и их соединений, изучение их электрической проводимости. 2. Теплопроводность металлов. 3. Модели кристаллических решеток металлов.

4. Взаимодействие металлов с неметаллами и водой. 5. Электролиз растворов хлорида меди (II) и иодида калия. 6. Опыты по коррозии металлов и защите металлов от нее. 7. Горение, взаимодействие с водой лития, натрия и кальция. 8. Взаимодействие с водой оксида кальция. 9. Качественные реакции на ноны кальция и бария. 10. Устранение жесткости воды. 11. Механическая

прочность оксидной пленки алюминия. 12. Взаимодействие алюминия с водой. 13. Взаимодействие алюминия с бромом, кислотами, щелочами. 14. Взаимодействие соединений хрома (II) и (III) с кислотами н щелочами. 15. Получение оксида хрома (III) разложением бикарбоната аммония.

Лабораторные опыты. 1. Рассмотрение образцов металлов, их солей и природных соединений. 2.Взаимодействие металлов с растворами солей. 3.Ознакомление с образцами сплавов (коллекции «Металлы и сплавы»). 4.Ознакомление с образцами природных соединений кальция. 5. Ознакомление с образцами алюминия и его сплавов. 6. Ознакомление с образцами чугуна и стали. 7. Свойства оксидов и гидроксидов алюминия 8. Качественные реакции на ионы железа. 9. Взаимодействие цинка и железа с растворами кислот и щелочей.

Тема творческой работы. Металлы и современное общество.

Раздел 4. Химия и жизнь (5 ч)

Тема 8. Человек в мире веществ, материалов и химических реакций. Вопросы экологии и химического производства (3 ч.)

Химия и пища. Химия и здоровье. Лекарственные препараты; проблемы, связанные с их применением.

Проблемы безопасного использования веществ и химических реакций в повседневной жизни. Токсичные, горючие и взрывоопасные вещества. Бытовая химическая грамотность

Вопросы экологии и химического производства (1 ч)

Направления развития химических и металлургических производств: малоотходные производства, короткие технологические циклы, утилизация отходов, замкнутость технологических циклов и т. д. Химическое загрязнение окружающей среды и его последствия

Тема 9. Производство неорганических веществ и их применение (2 ч)

Химическая технология как наука. Взаимосвязь фундаментальной химии с химической технологией (значение учений о кинетике, катализе, энергетике химических реакций в химической технологии). Понятие о химико-технологическом процессе. Понятие о системном подходе к организации химического производства; необходимость взаимосвязи экономических, экологических, технологических требований. Химико-технологический процесс на примере производства серной кислоты контактным способом. Различные виды сырья для производства серной кислоты. Условия протекания химических реакций, их аппаратурное оформление. Способы управления химическими реакциями в производственных условиях. Принципы химической технологии. Научные способы организации и оптимизации производства в современных условиях. Понятие о взаимосвязи: сырье — химико-технологический процесс — продукт.

Демонстрации. 1. Кодограммы и динамическое пособие «Производство серной кислоты». 2. Коллекция минералов и горных пород. 3. Слайды «Общие понятия химической технологии». 4. Модели производства серной кислоты, аммиака.

Лабораторный опыт. Ознакомление с образцами сырья для производства серной кислоты, чугуна и стали.

Расчетные задачи. Определение массовой или объемной доли выхода продукта в процентах от теоретически возможного.

Металлургия. Химико-технологические основы получения металлов из руд. Доменное производство. Различные способы производства стали. Легированные стали. Проблема рационального использования сырья. Перспективные технологии получения металлов.

Тема 10. Общие сведения об органических соединениях. (9ч)

Понятие о полимерных химических соединениях. Мономер; полимер; способность атомов углерода и кремния к образованию последних.

Соединения углерода — предмет самостоятельной науки — органической химии. Первоначальные сведения о строении органических веществ. Некоторые положения и роль теории А.М. Бутлерова в развитии этой Науки. Понятие о гомологии и изомерии.

Основные классы углеводородов. Алканы. Электронное и пространственное строение предельных углеводородов (алканов).

Изомерия и номенклатура предельных углеводородов. Физические и химические свойства

алканов. Способность алканов к реакции замещения и изомеризации.

Непредельные углеводороды — **алкены и алкины.** Электронное и пространственное строение алкенов и алкинов. Гомологический ряд алкенов. Номенклатура. Физические и химические свойства алкенов. Способность алкенов к реакции присоединения и полимеризации. Понятие о полимерных химических соединениях: мономер, полимер, степень полимеризации. Полиэтилен, полипропилен — представители полимеров. Алкины, номенклатура, свойства. Распространение углеводородов в природе. Состав нефти и характеристика основных продуктов, получаемых из нефти.

Кислородсодержащие органические соединения. Понятие о функциональной группе. Гомологические ряды спиртов и карбоновых кислот. Общие формулы классов этих соединений. Физиологическое действие спиртов на организм. Химические свойства спиртов: горение, гидрогалогенирование, дегидратация. Понятие о многоатомных спиртах (глицерин). Общие свойства карбоновых кислот. Реакция этерификации.

Биологически важные соединения. Химия и пища: жиры, углеводы, белки — важнейшие составные части пищевого рациона человека и животных. Свойства жиров и углеводов. Роль белков в природе и их химические свойства: гидролиз, денатурация.

Демонстрации. 1. Образцы простых веществ — неметаллов и их соединений. 2. Коллекция простых веществ-галогенов. 3. Растворимость в воде кислорода, азота, серы, фосфора. 4. Электропроводность неметаллов. 5. Получение моноклинной и пластической серы. 6.. Получение белого фосфора и его возгорание на воздухе. 7. Получение оксидов азота (II и IV). 8.. Взаимодействие азота, фосфора и углерода с металлами и водородом. 9. Взаимодействие брома с алюминием. 10. Взаимодействие серы с водородом, медью, натрием, кислородом. 11. Восстановление свинца из оксида на поверхности угля. 12. Получение кремния и силана. Окисление силана на воздухе. 13. Получение аммиака и исследование его свойств. 14. Получение и исследование свойств диоксида углерода. 15. Опыты, подтверждающие общие химические свойства кислот. 16. Горение серы и угля в азотной кислоте. Воспламенение скипидара в азотной кислоте. 17. Взаимодействие меди с концентрированной серной кислотой. 18.

Получение кремниевой кислоты. 19. Получение оксида серы (IV) и окисление его в присутствии катализатора. 20. Качественные реакции на анионы: сульфид, сульфат, карбонат, хлорид, бромид, иодид, нитрат, фосфат. 21. Коллекции: «Нефть», «Природный газ», «Топливо», «Пластмассы». 22. Модели молекул органических соединений. 23. Получение этилена и его взаимодействие с бромной водой и раствором перманганата калия. 24. Воспламенение спиртов. 25. Опыты, подтверждающие химические свойства карбоновых кислот. 26. Реакция этерификации. 27. Модель молекулы белка. 28. Денатурация белка. 29. Примеры углеводородов в различных агрегатных состояниях. 30. Получение ацетилена и его взаимодействие с бромной водой.

Лабораторные опыты. 1. Ознакомление с образцами серы и ее природных соединений. 2. Ознакомление с образцами соединений галогенов.

3. Получение углекислого газа и изучение его свойств. 4. Качественные реакции на анионы кислот.5. Восстановительные свойства водорода и углерода. 6. Получение угольной кислоты из оксида углерода (IV) и изучение ее свойств. 7.. Распознавание хлоридов и сульфатов.

Практические работы. 1. Получение аммиака и исследование его свойств. Ознакомление с химическими свойствами водного раствора аммиака. 3. Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов. 4. Определение качественного состава органического вещества.

Расчетные задачи. 1. Вычисление массы или объема продукта реакции по известной массе или объему исходного вещества, содержащего примеси.

Темы творческих работ. 1. Химические свойства элементов и их роль в экологических процессах (на примере изученных элементов IV, V, VI групп). 2. Фосфор (азот, селен, бор).

Распространение в природе; состав, строение, свойства и роль в техносфере.

Учебно-тематический план

у чеоно-тематический план	1						
Тема	Количество часов	Кол-во практических/ лабораторных опытов	Кол-во контрольных работ				
Повторение.	2	0/1	0				
Раздел 1. Теоретические основы химии.(16 ч)							
Химические реакции в свете трех теорий химии	3	0/1	0				
Теория электролитической диссоциации	13	1/2	1				
Раздел 2. Элемен	ты-неметаллы	и их важнейшие химичес	екие				
соединения (32 ч)							
Общая характеристика неметаллов	2	0/2	0				
Подгруппа кислорода и ее типичные представители	6	0/1	0				
Подгруппа азота и ее типичные представители	8	1/0	1				
Подгруппа углерода и ее типичные представители	7	1/4	0				
	Раздел III. Мет	аллы (13 ч.)					
Общие свойства металлов	3	0/2	0				
Металлы главных и побочных	10	0/7	1				
Pa	здел IV. Химия	я и жизнь (5 ч)					
Человек в мире веществ, материалов и химических реакций.	3	0/1	0				
Производство неорганических веществ и их применение	2		0				
Общие сведения об органических соединения.	9	1/0	0				
ВСЕГО:	68	4/12	3				
		· · · · · · · · · · · · · · · · · · ·					